일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- SSAFY
- 싸피 7기 입학식
- 유니온 파인드
- SWEA
- SSAFY 입학식
- React
- 프로그래머스 고득점 kit
- ssafy 7기 교수님
- ssafy 7기
- 프로그래머스
- git
- SSAFYcial
- 알고리즘
- DP
- ssafy 7기 합격
- 전이학습
- 웹 표준 사이트 만들기
- dfs
- bfs
- 백준7576 bfs
- DenseNet
- 삼성 청년 SW 아카데미
- SSAFY 8기
- 코딩교육
- 백준
- Learning
- 삼성청년sw아카데미
- 코딩 교육
- 이코테
- pytorch
- Today
- Total
목록인턴쉽/동계백마인턴쉽(2021) (7)
개미의 개열시미 프로그래밍
이번에 6,7주차를 한번에 작성하게 된 건 2주동안 유사이미지분류기를 고도화하거나 리팩토링하는데 초점을 두어서 나눌 필요가 없다고 생각했지만 사실 시간이 없기도 했습니다... 원래 기존의 아키텍쳐에서 많이 변경된 모습인데 처음 하는 협업이라 그런지 인턴분과 의사소통을 하는 부분에서 많은 미스가 있었습니다. '혼자 이렇게 구성하면 더 좋지 않을까' 라는 생각에 마음대로 수정하기도 했고 yaml파일과 trainer.py 코드도 두개로 나뉘는 것부터 소통이 잘 안된 것을 알 수있었습니다. (tester.py도 두개가 되버려서 통합하는데는 성공..) 개발자들은 원래 코드의 아키텍쳐를 서로 공유하고 설계본을 많이 안건드리는 선에서 작업을 한다고 합니다! 만약 디렉토리나 코드 변수에 대해 변경을 한다면 같이 하는 ..
저번 5주차를 마무리하며 작성했던 Trainer코드를 작성하고 리팩토링까지 완료하여 회의시간에 루카스님께 필요한 부분을 점검받았다. Notion 5주차 스프린트 Trainer.py 구조 서명하기 쉽게 정리 Trainer.py 전체 동작 최종 구현 Densenet_trainer의 분류기 부분이 카테고리에 맞춰서 원활한 학습이 가능하도록 구현 구현된 Trainer 설계 및 동작을 문서화 구현된 코드의 전체적인 설계와 동작구조를 문서화하거나 그림으로 표현 먼저, 과제를 구체적으로 설명하자면 '유사 이미지 분류' 라는 주제이며 코드는 아래와 같은 구조로 되어있다. 하나씩 간략히 설명하자면 - /dataset : 이미지 데이터들이 들어가는 디렉토리 - /model_property : 학습 후 저장될 모델의 가중치..
전이 학습(Transfer learning)은 직접 코드를 보면서 이해하는 것이 이해하는데 도움이 많이 되었습니다. 실습은 PyTorch.org 사이트에서 전이 학습에 대한 코드를 Colab, Jupyter notebook, GitHub으로 공유하고 있고 이 공유된 코드를 통해 정리를 하려고 합니다. tutorials.pytorch.kr/beginner/transfer_learning_tutorial.html 컴퓨터 비전(Vision)을 위한 전이학습(Transfer Learning) — PyTorch Tutorials 1.6.0 documentation Note Click here to download the full example code 컴퓨터 비전(Vision)을 위한 전이학습(Transfer L..
먼저, 전이학습을 공부하려는 이유는 이번 백마인턴의 주제가 유사 이미지 분류 개발이며 코드의 큰 틀은 전이학습구조로 이루어지기에 과제를 진행하기 위해 꼼꼼히 이해하는 단계가 필요하다고 생각했습니다. 전이학습이란(=Transfer Learning) 정의 : '특정 Task 또는 도메인에서 얻은 모델을 다른 Task에 적용하는 기술을 뜻함' 즉, 이미 dataset(A Task)에 학습이 진행된 pretrained model의 가중치(weight)를 가져와서 다른 dataset(B Task)에 적용을 하는 것으로 이해할 수 있습니다. 전이학습을 사용하는 특징으로는 세가지가 있습니다. 적은 데이터셋을 사용하여 모델 학습 대부분의 경우 전이학습한 모델이 처음부터 쌓은 모델보다 성능이 좋다. 시간이 절약이 된다...
원래는 전이학습을 정리하기 전에 먼저 올려야 순서가 맞지만 이미 Jupyer notebook으로 정리를 했기때문에 빨리 올려보려고 합니다.(복습도 할겸..!) DenseNet정리도 마찬가지로 구글링, 유투브 그리고 논문과 학교에서 지원해준 FastCampus강의를 참고했습니다.. 이번에 백마인턴쉽에서 맞게된 주제는 '유사 이미지 분류'이며 전이학습을 기반으로 하고 전에 설명했던 전이학습의 pre-trained model을 DenseNet을 씁니다. DenseNet은 이전 layer의 feature map을 계속해서 다음 layer의 입력과 연결(Concatenation)하는 방식으로 ResNer과 매우 유사합니다. ResNet과 같이 Pre-Activation구조를 사용하는데(이 구조는 아래에서 더 자세..
1주 차 내내 환경을 세팅한 것은 아니었고 Notion에 있는 너드팩토리의 온보딩 문서들을 보면서 회사 환경에 적응을 하는 주차였습니다. 앞으로 우리가 해야하는 과제는 '유사이미지 분류'이며 이미지 분류 인공지능 전이 학습에 대한 기술 지식이 필요하다고 하셨고 과제를 수행하기 앞서 아래와 같이 세팅하기 위해서 Anaconda와 PyTorch를 설치해야 했습니다. 설치해야할 패키지를 간단히 설명하겠습니다. torch => 다차원 텐서에 대한 데이터 구조가 포함되어 이에 대해 수학적 연산을 정의합니다. 또한 텐서 유형의 효율적인 직력화를 위한 많은 유틸리티와 기타 유용한 유틸리티를 제공합니다. torchvision => 데이터셋, 모델 아키텍처, 컴퓨터 비전을 위한 일반적인 이미지 변환으로 구성됩니다. nu..
음.. 인턴을 시작한지 거의 한달 후에 올리는 거다.. 이제서야 올리는 핑계는 작년을 생각하면 한 것도 많은데 연말에 뭘했는지 기억도 안나고 허무했던? 기억에 지났을지라도 기록을 남기려고 한다.. 백마인턴쉽으로 내가 지원한 곳은 대전 전민동에 위치한 플랜아이라는 회사로 웹,앱 개발 및 AI도 다루는 회사이다. 학점을 채워야하는 상황이기도 했고(pass를 하면 6학점을 준다) AI회사는 어떻게 일하는지도 궁금해서 지원했다. 처음엔 합격메일을 받고 의아했던건 면접을 그리 잘보지 못해서 난 백프로 떨어졌다고 생각했다ㅠㅠ 면접이 끝나고 스스로 부족한게 많다고 생각했었는데 메일을 받고 정말 놀랬었다ㅋㅋ 회사내부는 아마 막 지어진 건물이라 깔끔해서 너무 좋았다(다만 공사소리가 너무 컸다ㅠ 3월중순까지 랬는데 그땐 ..